Beilinson´s Tate conjecture for $K_2$ and finiteness of torsion zero-cycles on elliptic surfa

19阅读 2010-12-30上传56 加豆单 举报/认领 合伙人(招募中) 展开
In this paper, we study an analogue of the Tate conjecture for K_2 of U, nthe complement of split multiplicative fibers in an elliptic surface. A main nresult is to give an upper bound of the rank of the Galois fixed part of the netale cohomology H^2( bar{U},Q_p(2)) . As an application, we give an elliptic nK3 surface X over a p-adic field for which the tor..
文档格式:
.pdf
文档大小:
516.32K
文档页数:
56
顶 /踩数:
0 0
收藏人数:
0
评论次数:
0
文档热度:
文档分类:
待分类
系统标签:
beilinson elliptic tate conjecture torsion cycles
下载文档
收藏
打印

In this paper, we study an analogue of the Tate conjecture for K_2 of U, nthe complement of split multiplicative fibers in an elliptic surface. A main nresult is to give an upper bound of the rank of the Galois fixed part of the netale cohomology H^2( bar{U},Q_p(2)) . As an application, we give an elliptic nK3 surface X over a p-adic field for which the tor..

文档格式:
.pdf
文档页数:
56页
文档大小:
516.32K
文档热度:
文档分类:
待分类
系统标签:
beilinson elliptic tate conjecture torsion cycles

扫扫二维码,随身浏览文档

手机或平板扫扫即可继续访问

推荐豆丁书房APP  

获取二维码

分享文档

将文档分享至:
分享完整地址
文档地址: 复制
粘贴到BBS或博客
flash地址: 复制

支持嵌入FLASH地址的网站使用

html代码: 复制

默认尺寸450px*300px480px*400px650px*490px

支持嵌入HTML代码的网站使用

分享到